Incidence of the Value Added Tax in the context of high informality

Ana Paula Franco and Luciana Galeano^{*}

Preliminary draft. Version: May 8th, 2025

Abstract

We study incidence of the value-added tax (VAT) in high-informality settings. Consumption taxes have traditionally been considered regressive but recent research suggests they might be progressive under specific assumptions regarding pass-through of taxes to prices and household shopping behavior. We use high-frequency price data from formal and informal markets in Peru and use a temporary VAT exemption to calculate pass-through. We use household survey data to analyze consumption patterns across the income distribution, finding that the bottom 10% of the income distribution spend 34 pp more on informal markets than the top 10%. Pass-through of taxes to prices in formal markets is close to 100%, and in informal markets roughly 60%. Informal markets exhibit anticipatory reactions prior to the policy's implementation, suggesting strategic behavior by market agents. To rationalize these empirical observations, we develop a Ramsey model of commodity taxation which accounts for heterogeneity in household types and their distinct preferences over different varieties of the goods. We recalculate VAT incidence taking into account the existence of informal sectors in the economy and find that the progressivity result disappears.

^{*}University of Michigan. apfranco@umich.edu; lgaleano@umich.edu. We are grateful to James Hines Jr., Joel Slemrod, Mazhar Waseem, Hoyt Bleakley, and participants in the Public Finance Seminar of the University of Michigan for their valuable insights and feedback. We are also grateful to the Ministry of Agricultural Development and Irrigitation in Peru (MINAGRI), which provided part of the data for this study and valuable information on how markets operates in the country, as well as to Rackham Graduate School and the Economics Department of the University of Michigan for their financial support in this project.

1 Introduction

Indirect taxes imposed on consumption, such as value-added taxes (VAT), are the primary source of government revenue in many developing countries (Jensen, 2022; Brockmeyer et al., 2024). According to a study by the Organization for Economic Cooperation and Development (OECD, 2022), taxes on goods and services constituted nearly half of the total tax revenue in 26 Latin American Countries (48.4%) in 2021, compared with a third (31.9%) in OECD countries. In contrast, direct taxes such as personal income tax and corporate income tax are less common in developing countries, where a large proportion of the population works in the informal sector and therefore avoids formal tax obligations. Indirect taxes, on the other hand, can be easier to administer and more difficult to evade, as they are embedded in the prices of goods and services and are therefore collected by businesses rather than individuals. This makes indirect taxes an attractive source of revenue for governments that lack the resources to effectively monitor and enforce compliance with tax laws.

The consensus view on the incidence of uniform consumption taxes is that they are regressive (Lustig, 2018; Warren, 2008) because they impose a larger tax burden on low-income households compared to high-income households. These arguments have led to governments applying a reduced (or zero) rate on necessity goods, such as food items. This is not optimal under the Atkinson and Stiglitz (1976) framework, according to which, under certain assumptions on utility function¹, it is better to avoid the distortions that arise from differential commodity taxation and redistribute using a non-linear income tax. However, these papers ignore informal consumption. Recent efforts (Bachas, Gadenne, and Jensen, 2023) find that when informality is accounted for, uniform consumption taxes are progressive and reduce inequality in developing countries. The methods in this alternative literature rely on using the store type reported for each purchase as a proxy for household consumption from the informal sector, exploiting the differences across the household income distribution in the share of total expenditure in each store and relying on the important assumption that all modern (traditional) stores are formal (informal) with 100 (0) percent passthrough of taxes to consumer prices. However, there are numerous reasons to believe that the latter does not hold in reality. If this is the case, the question about the incidence of consumption taxes in developing countries remains unanswered.

¹These assumptions are weak separability between consumption choices and income in utility, and homogeneity across individuals in the sub-utility of consumption. These two conditions imply that conditional on earnings, consumption choices provide no information on ability, and therefore differentiated commodity taxes create a tax distortion with no benefit.

There are several reasons to believe that the pass-through of taxes to prices is greater than zero in informal stores. One of them is related to the nature of the VAT structure. Stores typically offset the tax they pay for their purchases with the tax they receive from their sales. If informal stores buy part of their inputs from formal suppliers, the VAT they pay for these purchases is not recovered through fiscal credit because they sell in an informal way. Consequently, the amount of VAT paid for inputs is regarded as an additional cost that will be transferred to consumers. This is part of the well-known formal/informal dualism that makes incidence analysis intricate. A further rationale supporting the idea that pass-through is likely to be greater than zero relates to the possibility that traditional stores may charge equivalent or higher prices than their modern counterparts, even if informal, due to competitive forces with formal stores. As a result, customers may end up paying more for identical products instead of paying less, while the tax savings are kept (potentially) entirely by the store. Alternatively, informal stores may have a different supply chain and face higher costs than their formal counterparts. Finally, it might be the case that informal stores are not entirely informal, remitting taxes for at least a portion of their sales, making the pass-through greater than zero.

The assumption that the pass-through is 100 percent in formal stores does not seem to be accurate either. When a final good is exempted from the VAT, taxes paid on inputs are generally not allowed to be used as fiscal credit (this is in contrast to a zero rate tax, in which taxes paid on inputs can be recovered, or in contrast to a law that explicitly specifies that you can recover taxes paid on certain inputs of exempted goods²). Therefore, when a good is exempted, once again in this case, taxes paid on inputs are regarded as costs, and we would expect the price to go down by less than the total amount of the tax, even in the case of perfect compliance. In fact, Benzarti, Garriga, and Tortarolo (2024) use high-frequency retail scanner data from Argentina and find that a temporary VAT cut (from 21 percent to 0 percent) had a 60 percent pass-through. They also estimate the pass-through of chain and independent supermarkets separately, finding that the pass-through of the VAT cut at the former was 84 percent and the latter 35 percent.

It is with this framework in mind that the current paper aims to address the question of what is the true incidence of the VAT in countries with substantial informality. This serves as a basis for exploring the implications for optimal commodity taxation when the existence of informality is considered. We are going to address this question by looking at the case of Peru, which provides a convenient case study for numerous reasons. First, it has high levels of informality, with an informal employment rate of

 $^{^{2}}$ The latter is the case for the law that regulates the policy we exploit in this study.

71.6 percent in 2023^3 , according to International Labour Organization (2024), and with 58 percent of formal private firms having indicated that they faced competition from unregistered or informal firms in 2023, according to a report from the World Bank's Enterprise Surveys (World Bank, 2024). Secondly, it has publicly available high-frequency data on wholesale and retail prices at the level of market-productvariety for large markets that sell most of their transactions (if not all) in an informal way⁴. Third, we have data for a subset of formal supermarkets that allow us to calculate pass-through of the formal sector in Peru. Lastly, a policy announced in mid-April 2022 temporarily exempted certain products of the basic consumption basket from the value added tax (VAT), originally at 18 percent, starting on May 1st, 2022 through July 31st, 2022. The goal of the policy was to limit the inflationary impact generated by the international economic crisis. The law exempted the last stage of production only, but stated that a fiscal credit was to be issued for the amount of VAT paid for the main (but not all) inputs (either domestically bought or imported) used in the production of the exempted goods. This setting provides a natural experiment to estimate the pass-through of taxes to prices for the products subject to a tax change as a result of the policy.

The incidence analysis relies on detailed expenditure microdata from the 2022 National Household Survey of Peru (ENAHO, for its Spanish acronym). One of the key strengths of the survey is that it collects information on the various types of stores where households purchase products, such as supermarkets, specialty stores, and street vendors. By classifying these stores into formal and informal categories, we gain valuable insights into household consumption patterns across both sectors. This categorization enables us to construct a proxy for household consumption from the informal sector, which, together with the estimation of the pass-through of taxes to prices as outlined in the preceding paragraph, will let us conduct a comprehensive analysis of the impact of consumption taxes on inequality, taking into account the prevalence of informality in the economy.

The findings of our pass-through analysis suggest that the pass-through of taxes to prices in formal stores is close to 100% and in informal markets roughly 60% informal stores, with some differences depending on the product. At the same time, households in the bottom 10 percent of the income distribution spend, on average, 34 percentage points more of their income at informal markets than those in the top 10 percent of the income distribution.

 $^{^3 \}rm Calculated$ as the share of informal employment in total employment for Youth and Adults (ages 15+) based on LFS - Permanent Employment Survey.

⁴That is, without remitting consumption taxes to the tax authority.

One concern that might arise is how we decide which store is considered formal and informal, as well as how credible is the assumption that the markets on which we have data do not pay taxes on the output sold. To address these concerns, we conducted a survey for a subsample of these markets in Peru to determine the percentage of their sales that are done in an informal way.⁵ With the survey, we also collect information about their price setting strategies, which will serve as important input on the calibration of the production side of the model.

Our study adds to the body of literature that examines the impact of value-added taxes on the economy (Benzarti, Garriga, and Tortarolo, 2024), as well as to those that acknowledge the influence of informality on the conventional conclusions drawn from previous research (Bachas, Gadenne, and Jensen, 2023). The primary contribution of this study is the estimation of pass-through for informal stores. Furthermore, this study distinguishes between pass-through analyses by product and formality stature. The findings of this study challenge the commonly held assumption in the literature (Bachas, Gadenne, and Jensen, 2023) that informal markets have a pass-through rate of zero, and accordingly we recalibrate the incidence analysis by integrating our results.

The remainder of the paper is organized as follows. In Section 2, we discuss general aspects of the structure of the value-added tax and the institutional framework surrounding it in Peru. Section 3 outlines the details of the data used in this study. Section 4 elaborates on our empirical approach and preliminary results. Section 5 presents the incidence analysis. Section 6 presents our model draft. Finally, in Section 7, we summarize our findings and outline the subsequent stages of this project.

2 Institutional setting

Value-added taxes (VATs) are taxes on goods or services levied at multiple stages of production, with the crucial feature of taxes on inputs being credited against taxes on output. They are ultimately borne by the final purchasers (International Monetary Fund, 2014)⁶ and offer the advantage of securing revenue by the fact that they are collected throughout the process of production (unlike a retail sales tax) but without distorting production decisions (as a turnover tax does). In the absence

 $^{^{5}}$ We collected information of 420 stands in 42 different markets in Lima, Callao, and the interior of the country.

⁶The real burden of the tax may not fall entirely on consumers but may in part be passed back to suppliers of factors through lower prices received by producers. We are going to set aside this possibility for the purpose of this paper.

of restrictions regarding crediting of taxes that are paid on goods and services used as inputs to production (including those paid on investment goods), a VAT would be economically equivalent to a pure retail sales tax. However, practical considerations, such as restrictions on crediting tax for investment goods and monitoring costs, make it challenging to maintain such equivalence.⁷

In Peru, our country of study, indirect taxes represented 60.1 percent of total tax revenue in 2021, with taxes on goods and services representing 48.4 percent of total revenue, 41.9 percent coming from general taxes and 6.5 percent from excise taxes (International Monetary Fund, 2023). Peru has a single rate of 18 percent for its VAT, with 2 percentage points corresponding to a tax to the local authorities⁸. It is applied to all activities (with the exception of exports and certain products and operations that are exempted), such as buying and selling goods in the country, services, construction contracts, the first sale of real estate made by constructors, and imports of goods. It is collected through the invoice credit method, where each seller adds the applicable tax rate to each sale and issues an invoice indicating the tax charged. The buyer, if subject to VAT on their own sales, can offset the input tax paid on their purchases against the output tax charged on their sales. Any remaining tax balance is paid to the authorities, and excess credits can be claimed as a refund. The advantage of this method is that it is robust to the omission from taxation of any intermediate transaction. In cases where a vendor fails to levy or report a tax on a sale, any loss of tax revenue will be precisely compensated if the purchaser also omits to request the credit.

Exemptions in Peru are defined in terms of particular commodities or particular regions. The rationale for exemption in general is related to ameliorating the distributional consequences of the tax, both through the effect on prices that consumers face and through the effect on income, if we believe that producers of the exempted goods are on the lower end of the income distribution (and that part of the tax might be borne by producers through imperfect input credit).

A considerable number of goods and services are exempt in Peru by the VAT law, including the sale or import of certain livestock, fresh vegetables, cereals, phosphates, fertilizers, etc. (see the third column of Appendix Table A1 for a nonexhaustive list), as well as public transport services, cargo transportation, cultural performances, among others that are not relevant for the purpose of this study. These VAT exemp-

 $^{^7 \}mathrm{See}$ Brockmeyer et al. (2024) for a detailed description of how VAT works and its substantial importance in developing countries.

⁸Called "Impuesto de promocion municipal".

tions do not give right of input VAT deduction, meaning that while the tax is not charged on output, tax paid on inputs cannot be reclaimed. Therefore, production decisions (and prices) may be affected by the VAT.

At the same time, the Amazon region has been granted a VAT exemption since 1999, with the enactment of Law 27,037, as part of a government effort to promote development in the area. Despite the fact that this is not a zero-rating arrangement, as no credit is extended for taxes paid on inputs, it can be inferred that since the whole region is exempt, taxes on inputs are not levied. Consequently, this arrangement can be viewed as functionally similar to a zero-rating on output scheme, with consumption taxes exerting minimal influence on production decisions and prices.

The identifying policy variation we exploit is introduced by Law 31,452, which was issued on April 14, 2022.⁹ This law exempted specific food items that are part of the basic consumption basket from the VAT, both when coming from domestic or imported sources, with the aim of mitigating the inflationary impact generated by the ongoing global economic downturn. The exemption was in effect for three months, starting on May 1, 2022, through July 31, 2022, as shown in Figure 1. Exempted goods comprised fresh, chilled, or frozen poultry meat (specifically gallus domesticus), fresh eggs, granulated sugar, uncooked and unstuffed noodles, and bread. The reason behind including these goods was to alleviate the burden of rising food prices on low-income households, who typically spend a higher proportion of their income on these essential goods. At the same time, these are domestically produced goods that contribute significantly to the agricultural sector of the Peruvian economy.

The policy under consideration established that a fiscal credit was to be issued for the amount of VAT paid for the primary inputs (but not all inputs) used in the production of the exempted goods, whether being bought from domestic sources or from abroad.¹⁰ This arrangement constitutes a hybrid scenario that lies between exemption and zero-rating. Consequently, taxes will continue to affect production decisions and prices of these goods to some extent. In other words, pass-through could be anywhere between 0 and 100 percent for both formal and informal vendors.¹¹

⁹The government announced on April 2, 2022 that this law was going to be proposed, although there was no certainty then about the products to be included or the timeline of the policy.

¹⁰Columns 1 and 2 in Appendix Table A1 show the list of final products and inputs eligible for exemption for which we have data on prices.

¹¹Potentially pass-through could be greater than 100 if stores over react to the change in tax because of any reason (such as trying to get a higher mark up if they have certain market power by, for example, being the only store in the area). If we call "pass-through" exclusively the part of the price that depends on compliance with the tax, then it is ok to say that pass-through will be bounded by [0, 100]. Since in this paper we explore other reasons why the pass-through is not

Figure 1: Timeline of the policy

The aforementioned policy offers a valuable opportunity to assess pass-through of taxes to prices in both the formal and informal sectors, and this is part of our contribution.

3 Data

3.1 Prices

Formal sector. We have high-frequency data on prices for 80 varieties of products (including 3 of the 5 exempted by the policy¹² sold by 76 supermarkets in Peru in 2022, the year of the policy, on the market level.

Informal sector. This dataset comes from the "Domestic trade statistics of agricultural and agro-industrial food products" project, provided upon request by the Ministry of Agricultural Development and Irrigation of Peru, and elaborated by *Area de comercializacion de la Unidad Estadistica, Oficina de Estudios Economicos y Estadisticos (OEEE)* and *Direcciones de Informacion Agraria Regionales y Subregionales.* It is collected with the goal of keeping agricultural producers and economic

zero, maybe pass-through is not the right word. However, we use this word because we find it to be the most elusive word for the concept we are trying to picture and the most commonly used in the literature.

¹²Included: chicken, eggs, and sugar. Excluded: bread and noodles.

agents within the sector informed about the main aspects of the market. It provides high-frequency data (depending on the geographic region and the type of market, as described below) for a total of 330 varieties of products at the market level, including 4 out of the 5 products that were provisionally exempted from the VAT under the policy¹³. It covers 61 wholesale markets and 67 retail markets throughout the nation, including the metropolitan area of Lima, 23 regional capital cities, and 3 subregional capital cities in Peru.¹⁴ To promote comparability over time and across markets, the people in charge of collecting price information make sure that the product they choose meets the highest quality standards. They collect a sample of three to four prices for each product and report the average in the data.¹⁵ Data for wholesale markets in Lima is reported on a daily basis, while the corresponding data for the interior of the country are available on Mondays, Wednesdays, and Fridays. Data for the retail markets are available on Mondays, Wednesdays, and Fridays for both Lima and the interior of the country.

Some of these markets are publicly owned and the entrance of the sellers is governed by auctions, whereas others are privately owned and allot spaces for rent or sale to vendors. Although wholesale markets are open to both commercial and retail customers, they are typically located farther from urban centers, and consumers generally rely on nearby retail markets for their daily purchases. This version of the paper restricts the analysis to retail markets only, for comparability with the formal sector.

3.2 Other data

Own data collection. The key premise underlying our analysis is that most transactions in these markets are conducted outside the formal tax system. Even in the cases in which markets are publicly owned and have to comply with tax regulations, it is arguably safe to assume that there is a lot of space for informal transactions to occur, given the government's limited capacity for regular monitoring and enforcement. To test the accuracy of this assumption, we conducted a survey in May 2024 in 42 markets in our data in Peru (30 in Lima and Callao, 8 in Huánuco, and 4 in

¹³Included: chicken, eggs, noodles, and sugar. Excluded: bread.

¹⁴The regional capital cities are Abancay, Arequipa, Ayacucho, Cajamarca, Cerro de Pasco, Chachapoyas, Chiclayo, Cusco, Huaraz, Huancavelica, Huancayo, Huanuco, Ica, Iquitos, Madre de Dios, Moqueagua, Piura, Pucallpa, Puno, Tacna, Tarapoto, Trujillo, and Tumbes. The subregional capital cities are Andahuaylas (in Apurimac), Jaen, and Chota (in Cajamarca).

¹⁵The stands within a market they collect the data from are mobile, meaning that they are not always the same each day.

Ucayali) asking questions about the types of products offered, price-setting strategies, sales volume, the level of competition within the market and with formal stores, the extent to which clients pay in cash, credit card or other available electronic payment applications¹⁶, and other characteristics of the stand. Most importantly, we asked surveyors to register if there were any clients arriving while the survey was conducted, as well as if they had handed a receipt. Additionally, we randomly selected stands in each market to purchase merchandise from (for a random amount between 5 and 10 soles, enough for these stands to be forced to give you a receipt according to the law) and registered whether a receipt was given. We ran 420 surveys (10 in each market) and made purchases in 311 of the surveys.

National Household Expenditure Survey. We use data for consumption patterns across different types of stores from the 2022 National Household Expenditure Survey (in Spanish, "ENAHO"), which is conducted by the National Institute of Informatics and Statistics (in Spanish, "INEI") which has an expenditure module with a question that explicitly asks in which type of stores you buy each product, with information for 7,550 food products in the second quarter of 2022, the module we use. We classify each purchase as "formal" and "informal" based on the type of store each item is purchased from, with traditional stores and the markets we have data on classified as informal and modern stores as formal (see Appendix B for details on which store is classified in each group on Table B1, as well as a set of photographs that illustrate some types of stores/vendors). This gives us a proxy for food consumption from the informal sector at the household level, which we use to construct measures of progressivity of the VAT. In particular, we look at the share of food expenditure across the income distribution, differentiating between the store types in which they are bought from, as well as whether the products are subject to the VAT cut or not.

4 Results from Survey to Informal Markets

Appendix C shows a summary of the findings of our survey of informal markets. We find that, out of the 318 purchases made, a receipt was given in only 5 of them (1.6%). Regarding third-party purchases made during the time the survey was conducted, we found that in only 14 of the 804 purchases a client received a receipt (1.7%).¹⁷

 $^{^{16}}$ The most popular applications of these kind in Peru are called *Yape* and *Plin*. These are comparable to *Venmo* in the US but with a wider acceptance as a payment method in stores.

¹⁷The survey questionnaire is available upon request.

Looking at the results of the survey, as well as the receipts given in these markets when requested (as in Figures B4 and B5 in the Appendix B), we can draw several conclusions. First, around 98.3% of the transactions in these markets are not reported to the tax authority. Secondly, the price we observe in our data includes VAT. This is drawn based on the fact that when clients are given a receipt, the final price does not change (it is the same as the posted price in the market's signs). Third, people usually do not receive a receipt unless you ask for one. The receipt number in Figure B4 is 371, and the start date of these receipts that we can identify thanks to this tax payer id that we see (RUC - Registro unico de Contribuyente) is October 10, 2022. It is hard to believe that there were only 371 sales in almost 14 months. Similarly, the one in Figure B5 has 339 registered sales in almost 19 months. This is anecdotal evidence that supports our survey results that even though these stands are registered with the tax authorities, most of their sales are informal, keeping the VAT portion of the prices (or at least the portion corresponding to the sale to the final consumer) to themselves.

5 Pass-through Analysis

5.1 Empirical Strategy

Our main approach to calculate the pass-through of taxes to prices is one in which we restrict the analysis to regions that are always subject to the VAT (non-Amazon), which include more reliable data for the informal sector and also include formal sector data. The treated group consists of the products that are exempted by the policy under study, while the control group is made up of a set of products that are similar but not affected by the 2022 policy.

An alternative approach that we followed was to exploit the regional variation of the tax. We restricted the analysis to those products subject to the policy change and compare their prices in regions that are subject to VAT (non-Amazon; treated) with those in regions that are never subject to VAT (Amazon; control). However, the quality of the data we have for the Amazon region is not as good as in the non-Amazon region, resulting in noisier estimates and making it hard to identify a reliable measure of pass-through. We nevertheless include the results of this specification on Appendix D.

Going back to our main specification where we focus on the non-Amazon region,

"Treated" products refer to the final products that are exempt and for which we

have data on in both formal and informal markets: chicken, eggs, and sugar. The treated period spans three months from May 1, 2022 through July 31, 2022.

For this specification, we run the following Differences in Differences regression to estimate the effect of the VAT cut on prices for treated and control products separately for both formal and informal stores:

$$\ln p_{mpt} = \gamma_0 + \gamma_1 T_t + \gamma_2 \text{treated}_{mp} + \gamma_3 (T_t \times \text{treated}_{mp}) + \alpha_m + \alpha_p + \varepsilon_{mpt}$$
(1)

where p_{mpt} represents the price of product p in market m at date t, α_m and α_p are market and product fixed effects (FE) respectively, treated_{mp} equals 1 if the product is subject to the VAT exemption (treatment group), and equals 0 for the products included in the control group, and T_t equals 1 for the period during which the policy is applied. The coefficient of interest, γ_3 , estimates, on average, the percentage change in prices of the treatment group relative to the control group.

We expect the coefficient γ_3 to be larger in the regression for formal stores (F) than in the one for informal (I) stores, i.e. $\gamma_3^F > \gamma_3^I$. If the informal stores are fully informal, it could be the case that there is no impact of the VAT exemption on prices $(\gamma_3^I = 0)$. If prices in informal stores do respond to the policy $(\gamma_3^I \neq 0)$, this could indicate that these stores are more formal than originally thought (and thus, most of their prices reflect VAT compliance), or that they are adjusting their prices in response to competition with the formal markets, rather than directly responding to the VAT reduction.

In the survey we conducted to assess the extent of the informal operations in informal markets, we found that in roughly 98% of the transactions a receipt was not given. Therefore, we would expect the influence of competition with formal stores to be more significant than the actual VAT reduction to explain their price setting.

5.2 Results

Evolution of price of treated groups. Before jumping to the synthetic control group design, we look at the evolution of prices of treated groups in formal and informal stores running the following regression:

$$\ln p_{mpt} = \lambda_0 + \sum_t \beta_t \text{week}_t + \sum_t \gamma_t \text{week}_t * \text{formal}_m + \alpha_m + \alpha_p + \varepsilon_{mpt}$$
(2)

where $week_t$ are dummies per week and the rest of the notation is similar to the previous equations. We restrict the analysis to 2022 because that is the period for which we have data on both formal and informal stores.

Each β_t reflects the mean across markets and products percentage change in price at week t for informal markets relative to the week right before the policy was implemented. $\beta_t + \gamma_t$ would be the equivalent for formal markets.

Figure 2 shows the estimates for β_t and $\beta_t + \gamma_t$ with their corresponding confidence intervals, pooling all products together. We can see from this exercise that around the time the policy was implemented, formal markets reduced the prices of treated products by roughly 16%, which would be consistent with the story of full passthrough. Informal markets, on the other hand, began a gradual reduction after the policy announcement, which continued with the actual implementation, but the total reduction was considerably lower than in the formal sector (less than 10%, as seen in the graph). The prices then started to rise gradually, which could be the consequence either of less compliance with the policy or other factors that were raising the non-tax price level of these products.

Figure 3 shows the same exercise by product. We can see that the same patterns repeat for each product separately: at the date of the policy implementation, there was a sharp decrease in the price in formal markets. Informal markets, on the other hand, reacted earlier, after the policy announcement, in a gradual way and to a smaller extent than formal markets, but there is still a significant reduction in the price, consistent with the story that informal markets actually respond to a policy that changes the VAT even though most of their transactions are made in an informal way.

Synthetic Control. Although the high-frequency nature of our data suggests that the change that we see at the date of policy implementation and policy announcement might actually be attributed to the policy, we do not know for sure without having a credible control group. This is something we are currently working on. Preliminary results can be seen in Figure 4. It can be seen that there is still some work to do regarding finding the right control product (especially for the Chicken). However, again there can be seen that there is a non-zero reaction for

Figure 2: Percentage change of prices at Informal vs. Formal markets, relative to the week before policy implementation

Source: own elaboration based on data from the Ministry of Agricultural Development and Irrigation of Peru. Notes: these are the coefficients from equation (4) for a sample of products affected by the policy for which we have data in both formal and informal markets, in regions subject to the tax (non-Amazon). The vertical lines correspond to the dates of announcement of the law that regulates the policy, first day of implementation, and last day of the policy, respectively.

Figure 3: Percentage change of prices at Informal vs. Formal markets, relative to the week before policy implementation - By product

Source: own elaboration based on data from the Ministry of Agricultural Development and Irrigation of Peru. Notes: these are the coefficients from equation (4) for a sample of products affected by the policy for which we have data in both formal and informal markets, in regions subject to the tax (non-Amazon). The vertical lines correspond to the dates of announcement of the law that regulates the policy, first day of implementation, and last day of the policy, respectively.

Figure 4: Percentage change of prices at Informal vs. Formal markets, relative to the week before policy (median difference with respect to synthetic control)

Source: own elaboration based on data from the Ministry of Agricultural Development and Irrigation of Peru. Notes: these are the coefficients from equation (4) for a sample of products affected by the policy and for a synthetic control group for which we have data in both formal and informal markets, in regions subject to the tax (non-Amazon). The vertical lines correspond to the dates of announcement of the law that regulates the policy, first day of implementation, and last day of the policy, respectively. Blue lines correspond to informal markets and Orange lines to formal markets. Solid lines in the bottom three panels correspond to the evolution of the median price for treated products. Dashed lines in the upper three panels correspond to the difference between the solid and dashed lines in the bottom panels.

informal markets around the time of the policy and in the direction following the formal markets.

6 Incidence analysis

Regarding the distributional impact of the VAT cut, and considering that the policy was implemented to mitigate the negative impact of the international economic crisis on Peru's inflation, it is essential to examine household consumption patterns and estimate the share of food expenditure by store type across the income distribution. To achieve this, we use the National Household Survey (ENAHO) data for the second trimester of 2022, a period that coincides with the announcement and first two months of implementation of the policy. In this survey, we calculate the food expenditure for both temporarily exempt products and the rest of the food items (hereby "non-exempt"¹⁸), further breaking down the expenditure by different types of stores—formal stores and informal markets, which include those in our data (retail and wholesale markets) and other informal vendors—for each income decile¹⁹.

Given the observed differences in pass-through rates between formal and informal stores, we can approximate the tax burden for each store category and, consequently, for households from different income levels. For formal stores, we assign a full pass-through, leading to a 15.2% decrease in final prices for VAT-exempt products. In contrast, the price reduction for informal stores depends on their response to price changes in formal stores. As illustrated in Figure 4, prices in informal stores decreased by approximately 9%. Thus, we assume the tax burden for consumers is 15.2% in formal stores and 9% in informal stores. We will also let the pass-through be zero in informal stores for an alternative exercise to compare our results with those in (Bachas, Gadenne, and Jensen, 2023).

Figures 5 and 6 illustrate the share of exempt and non-exempt food items purchased in different types of stores by income decile. The exempt goods, affected by the VAT policy, include chicken, eggs, noodles, and sugar. The data shows that a significant portion of food expenditure occurs in informal stores (three bottom bar categories) across all income levels. This share ranges from 99% for the lowest income decile to 65% for the highest, decreasing as income rises, consistent with findings from previous studies (Bachas, Gadenne, and Jensen, 2023). It should be noted that the difference along the income distribution is even greater for the informal stores that are in the "Other informal" category, which we believe have an even higher degree of informality than the markets in our data.

This pattern holds true for both exempt and nonexempt goods, though the share of consumption in markets is higher for exempt goods at all income levels. This is likely because exempt goods typically have low added value, resulting in similar quality across store types, making it more likely for individuals from all income levels to purchase these goods in the same locations (i.e., there is no significant benefit to shopping at a supermarket for these items).

 $^{^{18}\}mathrm{Although}$ some of these goods include food items that are always exempt (mostly fruits and vegetables).

¹⁹See Table B1 on Appendix B for more details on store types and examples.

Figure 5: Share of Exempt Goods Expenditure by Store Type and Income Decile

Figure 6: Share of Non-Exempt Goods Expenditure by Store Type and Income Decile

Source: own elaboration based on data from ENAHO, 2022 April-June.

Source: own elaboration based on data from ENAHO, 2022 April-June. Exempt goods include chicken, eggs, noodles, and sugar.

Next we combine these shares and the pass-through results we found before to look at tax liability. We do a back of the envelope approximation of tax liability as the share of taxes that are paid by each decile, taking into account that the tax component in the expenditure we see will be different depending on how much each decile shops at each type of store. As we mentioned before, we assume full pass-through for formal stores, which for a 18% VAT rate corresponds to a 15.2% reduction in final price, and 9% or 0% reduction for informal stores, according to our earlier estimations and for comparison with the literature, respectively. The results assuming zero pass-through for informal stores are presented on Figure 7a, and partial pass-through (9% reduction) on Figure 7b.

In Figure 7a we see that the tax liability for households in the lowest income decile is less than 1%, while it is 3% for the highest decile. In other words, the VAT cut enables poorer households to retain 1% more of their income and wealthier households to retain 3% more. The blue line in Figure 7a illustrates the tax liability for exempted goods across all income deciles, suggesting that the VAT is more progressive than initially assumed once we take informality into account and under certain assumptions of the pass-through.

If we assume that the price response for non-exempted goods mirrors that of exempted goods (as shown in Figure 2), we can estimate the tax liability for nonexempted goods, represented by the dashed line in Figure 7a. The steeper slope of the tax liability curve suggests that the VAT on non-exempted goods is more progressive, meaning richer households bear a higher share of the tax burden. This aligns with the idea that non-exempted goods are less of a necessity and less standardized than exempted goods. Non-exempted goods are more likely to have added value, be sold at (formal) supermarkets, and be purchased by wealthier households.

Interestingly, if instead of assuming zero pass-through for fully informal stores we assume the same pass-through as the partially informal stores that we found in our study, results change significantly, as shown in Figure 7b. The tax liability now looks flat, and only rises for the highest income decile, suggesting that even when we take into account informality, the fact that pass-trough is not zero at informal stores suggests that the burden of the VAT on household consumption is pretty similar in absolute terms across the income distribution. This is largely because informal stores raise their prices in response to price increases in formal stores due to VAT.

However this exercise by construction would shield a flat curve if we assign the same pass-through through all types of stores. It is also based on deciles of food consumption, which does not differ by a lot in terms of distribution. Perhaps a

Figure 7: Tax Liability by Income Decile

more informative exercise would be that shown in Figure 8. What we do in this preliminary exercise is, first, assign each decile a proxy of total consumption applying to the total expenditure on food the shares that correspond to income of each decile. Then, we calculate the ratio of tax liability as in the previous exercise, but instead of dividing it by the actual food consumption of that decile, we scale it to mimic the income distribution. I will ignore now the interpretation of the level of this, but the shape is really informative. On Figure 8c we see the classic result of incidence of consumption taxes: if every store charges VAT, the VAT is regressive. In Figure 8a we apply instead a zero pass-through to informal stores, as in Bachas, Gadenne, and Jensen (2023). Because of the fact that in Peru consumption at informal stores is widespread, we obtain a flat curve, getting a neutrality result (instead of progressive result as in Bachas, Gadenne, and Jensen (2023)). If we apply instead the partial pass-through that we find in this paper (as in Figure 8b, we see that the VAT is still regressive.

7 Model draft

Having learned that pass-through differs between products, this section is devoted to developing a model that helps us understand what determines the level of pass-

Source: own elaboration based on data from ENAHO, 2022 April-June. Notes: tax liability is approximated multiplying the expenditure at each store type by the corresponding pass-through. In both panels, we assume full pass-through for formal stores, which for a 18% VAT rate corresponds to a 15.2% reduction in final price. For informal stores, we show the exercise of 0% pass-through on Figure 7a and partial pass-through (9% reduction) in Figure 7b.

Figure 8: Tax Liability by Income Decile

Notes: first we rescale total consumption in food assigning each decile the percentile as if it mirrored the income distribution. Then, we proxy tax liability by looking at the share of food expenditure in informal and formal stores, with the corresponding pass-through.

through.

We start with a Ramsey model of commodity taxation with heterogeneous households (Diamond, 1975), with a continuum of types that differ according to their level of income, in a context where there are j goods, and two varieties, formal and informal. The quality of the goods is equal in the formal and informal sector, with the difference that the amenities in each sector are different and consumption in the informal sector is not taxable. Households also differ in their valuation for the amenities.

Households. There are N households. Households (i) differ in their exogenous level of income (y^i) . Each household has the same preferences over J goods, with each good available in both informal (v = 0) and formal (v = 1) varieties. The quality of the good will be the same in formal and informal varieties.

Both sectors offer amenities, though of different kinds. Formal stores provide conveniences such as accessible parking, cleaner facilities, air conditioning, and less crowded spaces—amenities generally preferred by wealthier customers. In contrast, informal stores offer flexibility with bulk splitting, allowing customers to buy smaller quantities—e.g., individual eggs, or single-use packets of detergent—instead of fullsized packages, and often provide an informal credit or tab system for trusted cus-

Source: own elaboration based on data from ENAHO, 2022 April-June.

tomers. These features make shopping more accessible and manageable for lowerincome customers with limited cash flow.

Preferences over amenities while purchasing good j vary across households following an exogenous logit distribution A_j^i with pdf g and cdf G. Positive values of A_i mean that household prefer the amenities of the formal sector, negative values indicate a negative preference for the formal amenities, or equivalently a positive valuation of informal amenities. Zero indicates indifference.

To build intuition, we begin by assuming that the share of income household i allocates to good j, y_j , is exogenous. We assume that this share is the result from a prior optimization process in which each household determines how much income to allocate to good j. Thus, for each good, the only choice households face is the sector in which they will consume: either formal (c_{jF}) or informal (c_{jI}) . We also assume that the good only consumes one good at a time, this will be good j.

For household i, if it purchases good j in the *formal* sector, the utility is:

$$U_F^i = u(c_{jF}^i) + A_i \tag{3}$$

where c_{jF}^{i} represents consumption of good j in the formal sector and u(.) is twice differentiable, increasing in consumption c_{jF}^{i} and concave. A_{i} denotes the valuation of formal-sector amenities. A positive A_{i} implies higher utility for households choosing the formal sector (i.e., the larger the A_{i} , the greater the utility from shopping formally).

Similarly, if the household buys good j in the *informal* market, the utility is:

$$U_I^i = u(c_{iI}^i) - A_i \tag{4}$$

where $-A_i$ represents the valuation of informal-sector amenities. For those who prefer these amenities, A_i is negative, resulting in higher utility when shopping informally. u(.) is again twice differentiable, increasing in consumption c_{iI}^i , and concave.

Therefore, household i's utility from consuming good j is as follows:

$$U^{i} = [u(c^{i}_{jF}) + A_{i}]v^{i}_{j} + [u(c^{i}_{jI}) - A_{i}](1 - v^{i}_{j})$$
(5)

where v_j^i is an indicator variable representing the choice to buy good j in the formal sector.

Households face the following budget constraint:

$$p_{jI}c_{jI}^{i}(1-v_{j}^{i}) + p_{jF}c_{jF}^{i}v_{j}^{i} \le y_{j}^{i}$$
(6)

where p_{jI} (p_{jF}) is the consumer price of good j in the informal (formal) sector, and y_j^i is the exogenous share of income of household i allocated to the consumption of good j. The formal sector is taxable, while the informal sector is not. Let t_j be the tax rate on the formal variety of good j. Thus, consumer prices in both sectors follow:

$$p_{jF} = q_{jF}(1+t_j)$$

$$p_{jI} = q_{jI}(1+\mu t_j)$$
(7)

where q_{jF} (q_{jI}) is the producer price of good j in the formal (informal) sector. In the formal sector, the consumer price is the standard after-tax producer price. In the informal sector, the consumer price includes a mark-up associated with the tax rate. The term μ captures the indirect effect of tax rate changes in the formal sector on prices in the informal sector. If there is no indirect effect, then $\mu = 0$. If there is a positive strategic interaction in prices—meaning informal stores increase their prices when formal stores increase theirs due to a tax change—then $\mu > 0$.

For each good j, households choose whether to consume the formal variety $(v_{jF}^i = 1)$ or the informal variety $(v_{jI}^i = 0)$ to maximize their utility given their exogenous amenities. The decision rule is thus:

$$v_{jF} = \begin{cases} 1 & \text{if } u(c_{jF}^{i}) + A^{i} \ge u(c_{jI}^{i}) - A^{i}, \\ 0 & \text{otherwise,} \end{cases}$$
(8)

Given that the budget assigned to good j is already fixed, we can substitute the budget constraint directly into the utility function. Therefore, households will choose the formal variety of good j if:

$$U_F^i \ge U_I^i$$

$$A_i \ge \frac{1}{2} \left[u(c_{jI}) - u(c_{jF}) \right]$$

$$A_i \ge \frac{1}{2} \left[u\left(\frac{y_j}{q_{jI}(1+\mu t_j)}\right) - u\left(\frac{y_j}{q_{jF}(1+t_j)}\right) \right]$$
(9)

u can be approximated as $u\left(\frac{y_j}{q} \cdot \frac{1}{1+\mu t_j}\right) \approx u\left(\frac{y_j}{q}\right) + u'\left(\frac{y_j}{q}\right)\left(\frac{y_j}{q} \cdot \frac{1}{1+\mu t_j} - \frac{y_j}{q}\right)$, which, together with assuming that the producer price is the same in both varieties, give us

the final choice condition for buying good j on the formal sector:

$$A_{i} \ge \frac{1}{2}u'\left(\frac{y_{j}}{q}\right)\frac{y_{j}}{q}\left(\frac{1}{1+\mu t_{j}} - \frac{1}{1+t_{j}}\right) = A^{*}$$
(10)

where $\frac{1}{1+\mu t_j} - \frac{1}{1+t_j}$ represents the relative price difference between the informal and formal sectors due to taxes.

If $\mu < 1$, this term is positive, meaning that informal-sector prices are lower due to a reduced or avoided tax burden. For the household to choose the formal sector, A_i needs to be large enough to outweigh the utility benefits of lower prices in the informal sector. If $\mu > 1$, informal sector's prices are actually higher than those in the formal sector when taxes increase (i.e., an increase in the formal sector tax rate t_j leads to a greater-than-proportional increase in informal sector prices). The informal sector's price advantage diminishes or reverses. Only individuals with a stronger preference for informal amenities (more negative A_i) would continue to choose the informal sector despite the price increase.

As A_i is distributed following a logit distribution with cdf G, then the number of households that buy the good in the formal sector is given by $N_F = 1 - G(A^*)N$ and in the informal sector is given by $N_I = G(A^*)N$. This gives us the demand for good j in formal and informal sectors, respectively.

Producers We assume a fixed number of firms, K, with a fixed share of formal and informal firms, represented by α_F and $\alpha_I = 1 - \alpha_F$. Each firm's productivity in producing good j is exogenous and given by ϕ_j^h . The production function is linear, $x_j^h = \phi_j^h$, implying that each firm has a set production level that cannot adjust to changes in demand or price.

Firms in the informal sector face an informality cost, R^h , representing the cost of getting caught, which varies by firm due to different potential implications if caught. This cost is exogenously given. Therefore, firm profits are defined as:

$$\pi_F^h = \phi_j^h [q_j - c_j] \pi_I^h = \phi_j^h [q_j (1 + \mu_j t_j) - c_j] - R^h$$
(11)

where q_j is the producer price of good j, c_j is the marginal cost of good j, R^h is the informality cost for firm h, and μ_j captures the strategic interaction in pricing between the formal and informal sectors, as previously defined. **Social Planner** The social planner seeks to choose a tax rate t_j that maximizes total welfare, ensuring that the tax revenue generated from formal-sector consumption meets a spending target \bar{g} .

Since each household makes a binary choice to either consume formally or informally, welfare can be expressed as:

$$\max_{t} W = \int_{A^*}^{\infty} \left(u \left(\frac{y}{p_F(t)} \right) + A \right) dG(A) + \int_{-\infty}^{A^*} \left(u \left(\frac{y}{p_I(t)} \right) - A \right) dG(A)$$
(12)

where $p_F(t) = q_F(1+t)$ is the formal sector price; $p_I(t) = q_I(1+\mu t)$ is the informal sector price, which includes any indirect effect of the tax rate t_j through μ ; A^* is the threshold value of A_i at which households are indifferent between the formal and informal sectors.

To meet the government's revenue target \bar{g} , the tax revenue from households in the formal sector must satisfy the following condition:

$$t p_F(t) y \cdot (1 - G(A^*)) \ge \bar{g} \tag{13}$$

Therefore, the optimal t_j will depend on the distribution of A, the utility function u, and the tax sensitivity in both the formal and informal sectors.

Market clearing conditions. Equilibrium requires that the total quantity supplied across both formal and informal varieties equals the total quantity demanded for good j. Given the fixed shares of formal and informal firms, represented by α_F and $\alpha_I = 1 - \alpha_F$, the market clearing conditions for each variety are as follows:

For the formal sector:

$$\sum_{i=1}^{N} v^{i} c_{j}^{i} = \alpha_{F} \sum_{h=1}^{K} x_{j}^{h}$$
(14)

For the informal sector:

$$\sum_{i=1}^{N} (1 - v^{i})c_{j}^{i} = \alpha_{I} \sum_{h=1}^{K} x_{j}^{h}$$
(15)

Optimal VAT We introduce a Lagrange multiplier, λ , for the revenue constraint:

$$\mathcal{L} = W - \lambda \left[t, p_F, y \cdot (1 - G(A^*)) - \bar{g} \right]$$
(16)

From the first-order conditions, we obtain the following expression:

$$\frac{d\mathcal{L}}{dt_j} = -\int_{A^*}^{\infty} \frac{yu'\left(\frac{y}{p_F}\right)}{p_F^2} q, dG(A)
-\int_{-\infty}^{A^*} \frac{yu'\left(\frac{y}{p_I}\right)}{p_I^2} q\mu, dG(A)
-\lambda \left[y\left(1 - G(A^*)\right) - t_j yg(A) \frac{dA^*}{dt_j} \right] = 0$$
(17)

If we assume $u(c) = \ln(c)$ and rearrange terms, the social welfare function becomes:

$$W = [1 - G(A^*)]N[\ln(c_F) + \mathbb{E}[A \mid A \ge A^*]] + G(A^*)N[\ln(c_I) + \mathbb{E}[-A \mid A \le A^*]]$$
(18)

The FOC is then:

$$\frac{1}{1+t_j} - \frac{\mu\theta}{1+\mu t_j} + \frac{\epsilon}{t_j} [\ln(c_F) - \ln(c_I)] = \lambda N y (1+\epsilon)$$
(19)

where λ is the Lagrange multiplier (shadow price of government revenue); ϵ is the elasticity of formal sector participation with respect to t_j ; and $\theta = \frac{G(A^*)}{1-G(A^*)}$ represents the ratio of informal to formal sector households.

On the left-hand side (LHS), the first two terms represent the marginal welfare loss from a small increase in the tax rate t_j due to reduced consumption in the formal and informal sectors, respectively. The third term represents the marginal welfare effect due to households switching sectors. The right-hand side (RHS) represents the marginal value of government revenue from a small increase in t_j , adjusted for the change in the number of households in the formal sector due to sector switching.

We compare this FOC with the case where there is no strategic interaction between prices in the formal and informal sectors—equivalent to assuming households do not switch sectors when the tax rate changes. Here, the distribution of households between the formal and informal sectors remains constant, making μ irrelevant. In this scenario, total social welfare W simplifies to:

$$W = [1 - G(A^*)]N[u(c_F)] + G(A^*)N[u(c_I)] + \text{Constants}$$
(20)

Since A and $G(A^*)$ are constants in this case (no sector switching), we can treat the terms involving the informal sector as constants. Thus, W depends on t_j only through c_F . The FOC then follows:

$$\frac{1}{1+t_j} = \lambda N y \tag{21}$$

In this FOC, compared to the one with strategic price interactions, we only have the marginal welfare loss from reduced consumption in the formal sector, as μ is assumed to be zero. The RHS represents the marginal value of government revenue from a small increase in t_j and does not include the $(1 + \epsilon)$ factor, as the tax base remains constant ($\epsilon = 0$).

This analysis indicates that without strategic interactions, the optimal tax rate (t_j^*) is higher compared to the scenario with strategic interactions. In the absence of strategic interactions, the tax rate only affects the formal sector consumption, as households do not switch to the informal sector regardless of tax changes. Consequently, there is no reduction in consumption within the informal market due to changes in prices in the informal sector (μ) . Conversely, when strategic interactions are present, increasing the tax rate also induces welfare losses in the informal sector (in addition to those in the formal sector). These losses come from households switching to the informal sector, and the informal sector's prices adjusting upward due to μ .

8 Next steps

We are enthusiastic about this project and look forward to improving the quality of the paper. We acknowledge that significant works remains to be done in order to address the research question, and we are actively working on it, as it remains a priority in our research agenda.

We are hoping the next version will include most of our future steps, including:

- Improve the pass-through estimations using a better control group
- Finish the model, calibrate it, and look at the implications for optimal taxation of this partial pass-through in informal stores.
- Examine tax incidence using household surveys more deeply (explore Engel curves, Gini, etc.

• Try to do a back-of-the envelope calculation of how much of the pass-through in informal stores is due to actual remittance of the tax (we suspect this is zero because of the results in our survey); how much is due to formal inputs along the supply chain which is taken as a cost and increases the price at informal stores; and how much due to competition. The competition channel could potentially be evaluated by looking a different pass-through depending on how many markets you have near you. We could do this by focusing on the markets in our data and looking at differential pass-through depending on the distance to the nearest formal or other informal store.

References

- Atkinson, A.B. and J.E. Stiglitz (July 1976). "The design of tax structure: Direct versus indirect taxation". In: *Journal of Public Economics* 6.1, pp. 55–75. ISSN: 00472727. DOI: 10.1016/0047-2727(76)90041-4. URL: https://linkinghub. elsevier.com/retrieve/pii/0047272776900414 (visited on 11/30/2022).
- Bachas, Pierre, Lucie Gadenne, and Anders Jensen (Sept. 21, 2023). "Informality, Consumption Taxes, and Redistribution". In: *The Review of Economic Studies*, rdad095. ISSN: 0034-6527. DOI: 10.1093/restud/rdad095. URL: https://doi. org/10.1093/restud/rdad095 (visited on 08/02/2024).
- Benzarti, Youssef, Santiago Garriga, and Dario Tortarolo (Mar. 1, 2024). Can Vat Cuts and Anti-Profiteering Measures Dampen the Effects of Food Price Inflation? Rochester, NY. URL: https://papers.ssrn.com/abstract=4762948 (visited on 08/02/2024).
- Brockmeyer, Anne et al. (Feb. 2024). "Does the Value-Added Tax Add Value? Lessons Using Administrative Data from a Diverse Set of Countries". In: Journal of Economic Perspectives 38.1, pp. 107–132. ISSN: 0895-3309. DOI: 10.1257/jep.38. 1.107. URL: https://www.aeaweb.org/articles?id=10.1257/jep.38.1.107 (visited on 08/02/2024).
- Diamond, P. A. (Nov. 1, 1975). "A many-person Ramsey tax rule". In: Journal of Public Economics 4.4, pp. 335-342. ISSN: 0047-2727. DOI: 10.1016/0047-2727(75)90009-2. URL: https://www.sciencedirect.com/science/article/ pii/0047272775900092 (visited on 08/02/2024).

- International Labour Organization (2024). "ILO modelled estimates database" ILO-STAT. URL: https://ilostat.ilo.org/data/.
- International Monetary Fund, ed. (2014). *Government finance statistics manual 2014*. Washington D.C: International Monetary Fund. 446 pp. ISBN: 978-1-4983-4376-3.
- (2023). Government Finance Statistics. URL: https://data.imf.org/?sk= a0867067-d23c-4ebc-ad23-d3b015045405.
- Jensen, Anders (Jan. 2022). "Employment Structure and the Rise of the Modern Tax System". In: American Economic Review 112.1, pp. 213-234. ISSN: 0002-8282. DOI: 10.1257/aer.20191528. URL: https://www.aeaweb.org/articles?id=10. 1257/aer.20191528 (visited on 08/02/2024).
- Lustig, Nora, ed. (2018). Commitment to equity handbook: estimating the impact of fiscal policy on inequality and poverty. Washington, D.C: Brookings Institution Press. 1 p. ISBN: 978-0-8157-3221-1.
- OECD, et al. (2022). Revenue Statistics in Latin America and the Caribbean 2022. URL: https://doi.org/10.1787/58a2dc35-en-es..
- Warren, Neil (June 26, 2008). A Review of Studies on the Distributional Impact of Consumption Taxes in OECD Countries. Paris: OECD. DOI: 10.1787/241103736767. URL: https://www.oecd-ilibrary.org/social-issues-migration-health/areview-of-studies-on-the-distributional-impact-of-consumptiontaxes-in-oecd-countries_241103736767 (visited on 08/02/2024).
- World Bank (2024). Enterprise Surveys Country Profile: Peru 2023. URL: https://
 www.enterprisesurveys.org/content/dam/enterprisesurveys/documents/
 country/Peru-2023.pdf.

Appendices

A Appendix A

Tuble III, I reduce classification must reduine and control group.	Table A1:	Product	classification	into	treatment	and	control	groups
--	-----------	---------	----------------	------	-----------	-----	---------	--------

Treated	Maybe Treated (Inputs)	Control								
Temporary VAT exemption	Taxes on these inputs are allowed to be used as fiscal credit	Always VAT exempted	Standard 18% VAT (Never exempted)	VAT exemption in Amazon region						
Sugar (21 varieties)	Cooking oils (7 varieties)	Garlic	Quinoa							
Chicken	Flour (3 varieties)	Oats	Rice							
Pasta (5 varieties)	Chicken (poultry)	Onion	Beef	Same products as in						
Eggs		Strawberries	Pork	Treated and Maybe						
		Beans	Squash	Treated but in regions						
		Milk	Tuna	that are always exempted						
		Lettuce	Corn	from the VAT						
		Lemon and limes	Turkey							
		Apples	Basil							
		Avocado	Bell pepper							
[28 product-varieties]	[11 product-varieties]	[176 product-varieties]	[99 product-varieties]							

B Appendix B

Table B1: Classification of store type reported in ENAHO as formal, informal, or other

Formal	Informal	Others
Bakery	"Ambulante" (street vendor/peddler)	Others
Supermarket	"Bodega" (traditional stores)	
Restaurants and bars	Wholesale and retail street markets	
	Foodtrucks/vans	
	Fairs	

Figure B1: "Informal" Markets in Lima, Peru

Figure B2: "Bodega"

Figure B3: "Ambulante"

Figure B4: "Start date: Oct-10-2022"

Figure B5: "Start date: May-11-2022"

Va	alenti CAFÉ PREMIU	CAFE VALENTINO De : PRETEL GALVEZ MARTHA DEL PILAR Dirección : PASAJE SAN AGUSTIN 167 - 1 TRUJI Teléf. : 940887188 - 949070788 Para consultar el documento ingresar a : ww	RUJILLO - LA LIBERTAD - TRUJILLO Lo Mastrucksac.com/cafevalentino	AIL :	UC. Nº 1018 BOLETA DE ELECTRÓI BV01-00000	0921376 VENTA NICA 000339
Clien Direc	nte: CLIEN cción: AV 1	0000 TE EVENTUAL RUJILLO - LA LIBERTAD - TRUJILLO - TRUJILLO		F. I Fecha	Precio Ve Emisión : 23/1 F. Pa de Vencimiente	s Incluyen IGV indedor : RUTH 1/23 11:04 AM go : CONTADC p : 23/11/2023
Item	Codigo Int.	Artículo	Present.	Cantidad	Precio	Importe
>	P			-		0.75
1						

C Appendix C. Own Survey to Informal Markets

		Type of stand				
	A11	Groceries	Animals	Sausages &	Fruits and	
		GIOCETIES	and Eggs	similar	Vegetables	
Share surveyed stands	100%	24%	32%	15%	29%	
Average number of workers	1.60	1.51	1.81	1.53	1.46	
Average number of customers in a day						
1-15	3%	1%	4%	0%	5%	
16-30	27%	32%	26%	25%	24%	
31-50	38%	33%	43%	39%	37%	
51-100	22%	21%	16%	27%	26%	
101+	11%	14%	11%	9%	7%	
Average purchase value (in soles)						
s/1-5	3%	0%	2%	3%	5%	
s/6-10	23%	17%	18%	20%	33%	
s/11-20	42%	37%	34%	48%	51%	
s/21-40	25%	39%	33%	17%	7%	
s/41-60	4%	7%	4%	6%	1%	
s/61+	4%	0%	8%	5%	2%	
Montioned "messint" while	470	070	070	070	270	
describing a traical numbers	2%	4%	2%	3%	0%	
describing a typical purchase						
Typical payment method						
Cash	64%	64%	64%	60%	66%	
Credit Card	1%	0%	1%	1%	0%	
Yape or Plin	36%	36%	35%	39%	34%	
Made a purchase here	74%	84%	71%	80%	67%	
% that were given a receipt	1.6%	4.7%	0.0%	0.0%	1.2%	
(without asking for one)						
N other customers buying during survey	804	179	214	149	259	
% other customers that were given a receipt	1.7%	2.2%	2.3%	0.0%	0.8%	

Table C1: Survey to Markets. Summary statistics

	Relevance of each factor on determining final price (0=nothing, 1=little, 2=relevant, 3=very relevant)																						
	c	ost +	Margi	n		Dem	and		Decide alone, looking at other stands in the market			Decide alone, looking at supermarkets			king ets	Decide together with other stands in the market			with the	Level of competition			
Product	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	None	Little	High
apple	0%	28%	26%	47%	88%	9%	2%	0%	93%	7%	0%	0%	84%	12%	5%	0%	36%	36%	21%	7%	0%	30%	70%
avocado	2%	16%	41%	41%	91%	9%	0%	0%	93%	5%	0%	2%	95%	5%	0%	0%	30%	43%	20%	7%	0%	23%	77%
banana	0%	23%	38%	38%	83%	13%	4%	0%	94%	4%	2%	0%	85%	9%	7%	0%	32%	38%	17%	13%	0%	13%	87%
beef	0%	0%	100%	0%	100%	0%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	20%	0%	80%	0%	13%	38%	50%
cheese	0%	21%	44%	35%	90%	7%	2%	2%	91%	5%	3%	0%	83%	16%	2%	0%	31%	43%	7%	19%	3%	21%	76%
chicken	1%	20%	39%	39%	82%	15%	2%	0%	92%	5%	2%	1%	88%	7%	5%	0%	32%	19%	14%	35%	4%	10%	87%
eggs	1%	18%	38%	43%	83%	9%	6%	2%	89%	10%	1%	0%	87%	13%	0%	0%	42%	22%	16%	20%	0%	12%	88%
fish	0%	0%	100%	0%	100%	0%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	0%	17%	83%
honey	0%	0%	100%	0%	100%	0%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	0%	100%	0%
legumes	0%	0%	0%	100%	100%	0%	0%	0%	100%	0%	0%	0%	100%	0%	0%	0%	0%	0%	50%	50%	0%	0%	100%
noodles	2%	28%	39%	31%	36%	30%	20%	14%	85%	12%	3%	0%	94%	6%	0%	0%	88%	8%	3%	1%	1%	15%	84%
olives	0%	11%	50%	39%	67%	28%	6%	0%	94%	6%	0%	0%	78%	17%	6%	0%	17%	28%	17%	39%	0%	22%	78%
onion	0%	24%	44%	32%	84%	12%	0%	4%	88%	12%	0%	0%	80%	20%	0%	0%	16%	44%	20%	20%	0%	20%	80%
pork	0%	0%	33%	67%	67%	33%	0%	0%	100%	0%	0%	0%	50%	33%	17%	0%	0%	100%	0%	0%	17%	33%	50%
potato	0%	19%	43%	38%	81%	10%	5%	5%	95%	5%	0%	0%	90%	10%	0%	0%	14%	38%	24%	24%	0%	10%	90%
rice	2%	21%	51%	26%	83%	11%	5%	1%	91%	6%	3%	0%	90%	9%	1%	0%	35%	36%	11%	17%	0%	17%	83%
sausage	2%	13%	44%	40%	77%	17%	2%	4%	88%	10%	0%	2%	83%	15%	2%	0%	38%	33%	15%	13%	4%	27%	69%
sugar	1%	47%	28%	24%	87%	3%	10%	0%	93%	0%	7%	0%	93%	1%	6%	0%	35%	12%	36%	17%	2%	22%	76%
tomato	0%	26%	43%	30%	70%	30%	0%	0%	87%	9%	4%	0%	70%	22%	9%	0%	13%	48%	30%	9%	0%	22%	78%
turkey	0%	0%	100%	0%					100%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0%	0%	100%	0%
average	1%	24%	40%	35%	78%	13%	6%	3%	91%	6%	2%	0%	88%	10%	3%	0%	39%	28%	17%	16%	2%	19%	80%

Table C2: Survey to Markets. Price determination factors, by product

treated (2022 policy)

D Appendix D. Amazon vs. Non-Amazon

D.1 Empirical strategy

In order to calculate the pass-through of taxes to prices in these markets, we adopt two different approaches. In this section, we explore the first approach, which involves comparing prices of the same policy-affected products in regions that are subject to VAT with those in regions that are never subject to VAT.

Thus, we restrict the analysis to products that are subject to the temporary VAT exemption. We classify observations in markets located in regions subject to tax (non-Amazon) as 'treated', and the same products in regions exempted from the tax (Amazon) as 'control'. This is because regions not subject to the tax should not respond to the policy. A clear advantage of this approach is that it allows us to ignore shocks that affect the international price of these products, or differences in seasonality by product, assuming these shocks affect both Amazon and non-Amazon regions in the same way.

'Treated' products refer to the final products that are exempt and for which we have data: chicken, eggs, sugar, and noodles at informal stores, (see Table A1 in the Appendix for more details). The treated period we consider is determined by the law, spanning three months from May through July 2022.²⁰

²⁰Since we are dealing with informal stores that can arguably be motivated by speculation, we could also create alternative treated groups that include products that were initially thought to be included in the temporary VAT cut, as well as changing the treatment period to include those days/weeks in between the announcement and the implementation of the policy. We find that effects disappear after we include more products than the ones that are finally included in the policy or if we change the treatment period to include the window between announcement and implementation, which suggests that there was clear information about the products included and the timeline of

As a first step, we will provide graphical and non-parametric evidence of the passthrough by plotting the unconditional mean of the real price of products in the treatment and control groups. We look at the evolution of this measure before, during, and after the policy was implemented in May 2022. The assumption we rely on in order to calculate pass-through using this strategy is that goods in the treatment and control groups are reasonably similar and thus comparable. One way to test this assumption would be to see to what extent prices follow parallel trends in the absence of the law.

Next, we run the following regression that allows us to add standard errors and controls to the evidence provided by just looking at the unconditional means to precisely estimate the magnitude of the effect of the VAT cut on prices:

$$\ln p_{mpt} = \beta_0 + \beta_1 T_t + \beta_2 NonAmazon_{mp} + \beta_3 T_t * NonAmazon_{mp} + \alpha_m + \alpha_p + \varepsilon_{mpt}$$
(22)

where p_{mpt} is the price of product p in market m at date t, α_m and α_p are market and product FE, respectively, $NonAmazon_{mp}$ is equal to 1 if the product is at a market in the non-Amazon region (treatment group), and T_t is equal to 1 for the period in which the policy is applied. The coefficient of interest, β_3 , estimates, on average, what is the percentage change in prices of treatment relative to control group means.²¹

the policy. We also look at results including inputs in the production of an exempted good (column 2 of Table B1). For some cases, we do see a reaction of the prices of these products, but this is not generally the case.

 $^{^{21}}$ Adding a time trend to control for each series having a trend overtime does not change results

Alternatively, we look at the corresponding coefficient for each product separately. This would be given by the coefficient β_3^p in the specification below, which is the same as the previous equation but excluding product FE and limiting the regression for the product we want to get the estimation for:

$$\ln p_{mpt} = \beta_0^p + \beta_1^p T_t + \beta_2^p NonAmazon_{mp} + \beta_3^p T_t * NonAmazon_{mp} + \alpha_m + \varepsilon_{mpt}$$
(23)

For each of these two regressions, we could two separate regressions: one that captures the effect of implementing the policy (from Jan2021 to Jul2022), and another one that captures the effect of ending the policy (from May2022 to Dec2022). Alternatively, we replace T_t by a categorical variable that takes the value of 0 for pre-policy period, 1 for policy period, and 2 for post-policy period. In the latter case, we would be comparing the pre-policy period with the policy period in one case, and the pre-policy period with the post-policy period in the other.

In all cases, we restrict the dataset to a panel of products that have fairly complete data in the period of analysis. As a way of dealing with outliers, we get rid of observations at the market-product-variety level that are farther than 5 standard deviations from the mean AND are higher than the 99th percentile of the standardized price. We also set as missing those observations that have a growth rate higher than 200 percent for one observation only and then go back to a similar level as before, since these are clearly data entry errors. After that we do linear interpolations to fill in missing values that appear either as a result of the previous outlier treatment significantly.

or because there was no data collected at that date for that product-variety in that market. For most of our analysis, we use daily data, but similar results are obtained if we do the analysis by week instead, taking the weekly median per market-productvariety as our data point. We also pick one variety for each product based on data availability to avoid over-representation of products with too many varieties. Finally, we restrict the sample to those products that have at least one data point per week in the sample, and to those markets that have at least one observation per week for the period under consideration to make sure that the sample of markets we use for each product does not change each week.

D.2 Results

D.2.1 Pass-through analysis

Figure D1 shows the evolution of prices of the exempted products, capturing the mean across products of the median across markets by week, for treatment and control groups. In this specification, the treatment group is composed by those products that are temporarily exempted from the VAT with the law, in regions subject to the tax (that is, markets in non-Amazon regions). The control group is composed by the same products, but in regions that are not subject to the tax (markets in Amazon region). The first, second, and third vertical lines correspond to the day in which the law was announced, the first day of implementation, and the last day in which it had effect, respectively. Notice that this figure shows the values normalized so that for the week previous to the policy implementation the values are equal to 100. Since we do not see a large difference around the policy between the

	(1)	(2)
	Removal VAT	Re-introduction VAT
(a) All products (pool)		
DiD coefficient (Non-Amazon vs Amazon)	0.0150	0.0799
	(0.0316)	(0.0513)
Observations	189,019	78,280
Pass-through rate		
(b) Eggs		
DiD coefficient (Non-Amazon vs Amazon)	-0.164**	0.0706***
	(0.0824)	(0.0176)
Observations	44,170	18,351
Pass-through rate	108%	

Table D1: Regression results

Coefficients *100 show the change in price relative to t=0 (pre-policy period)

two groups for the pooled products, we look instead at the same picture by product.

On Figure D2 we see that the product in which there is a clear trend and a change affected by the policy is eggs. As Figure D3b shows, before the announcement of the policy, the treated group was consistently above the control group, in a relatively stable trend, in favor of the hypothesis that the assumption that goods in the control and treatment group are comparable. This relation is inverted during the policy window, where we see that the control group is above the treated group. After the policy is terminated, the pattern is less clear. Figure D3 shows the results of these graphs for an alternative specification that corresponds to an event-study design by product. Pre-trends are not looking good here and that is why we do not use this approach.

Next, we look at the regression analysis using a Differences in Differences approach.

Figure D1: Evolution of prices for Amazon vs non-Amazon - pool of products

Source: own elaboration based on data from the Ministry of Agricultural Development and Irrigation of Peru. Notes: the treatment group is composed by products subject to the policy change in regions subject to the tax (non-Amazon). The control group is composed by the same products in regions exempted from the tax (Amazon). Y-axis shows the median price of the pool of products, weighted by their importance in the consumption basket according to household surveys, normalized to 100 for the week before the policy is implemented (April 23rd-30th 2022=100). The vertical lines correspond to the dates of announcement of the policy, implementation, and final day, respectively.

Figure D2: Evolution of prices for Amazon vs non-Amazon - By product

Source: own elaboration based on data from the Ministry of Agricultural Development and Irrigation of Peru. Notes: the treatment group is the price of the exempted products in regions subject to the tax (non-Amazon). The control group is the price of the same product in regions exempted from the tax (Amazon). Y-axis on the left shows the median price of the product (across markets), normalized to 100 for the week before the policy is implemented (April 23rd-30th 2022=100). Y-axis on the right shows the absolute difference in price level (not normalized) between Amazon and non-Amazon. The vertical lines correspond to the dates of announcement of the policy, implementation, and final day, respectively.

Table D1 shows a summary of the results, reporting the correspondent coefficient β_3 for the pooled sample of products, as well as for the specification by product focusing on the case of eggs. As mentioned in the previous section, we split the analysis in two sub-periods, to capture any asymmetric effect between the implementation of the policy and its termination. Column 1 shows the coefficient looking at the implementation of the policy (that is, comparing pre-period with VAT exemption period) and Column 2 shows the coefficient for the reintroduction of the VAT (comparing pre-policy period with post-policy period).

We can see that if we take all four products, we find zero difference between prices in both groups. Our preferred specification is the one that looks at each product separately. We only show the case of the eggs because it is the product for which we could identify parallel trends before the policy was implemented. We see that there is a reduction of 16 percent in the price in treated regions relative to control regions, which for a VAT rate of 18 percent means the pass through for eggs was basically 100 percent. Looking at column 2 we can see that there is no difference between the price after the policy was removed and the pre-policy period, and we find that there is no statistical difference, consistent with the idea that the changes we see are caused by the policy. Tables D2 and D3 on Appendix D show all specifications.

Figure D3: Percentage change of prices at Amazon vs. Non-Amazon informal markets, relative to the week before policy implementation - By product

Source: own elaboration based on data from the Ministry of Agricultural Development and Irrigation of Peru. Notes: these are the coefficients from equation (4) for a sample of products affected by the policy for which we have data in both amazon and non-amazon markets, in informal stores only. The vertical lines correspond to the dates of announcement of the law that regulates the policy, first day of implementation, and last day of the policy, respectively.

	(1)	(2)	(3)	(4)	(4)	(5)	(6)	(7)
VARIABLES		All four	products		Sugar	Chicken	Eggs	Noodles
NonAmazon	0.0311	0.154***	0.0265	0.112***	0.112***	0.0553***	-0.0442***	-0.389***
	(0.0360)	(0.00509)	(0.0333)	(0.00873)	(0.00873)	(0.00403)	(0.0133)	(0.00765)
Т	0.189***	0.189***	0.189***	0.263***	0.263***	0.0260	0.412***	0.0886**
	(0.0314)	(0.0314)	(0.0314)	(0.0541)	(0.0541)	(0.0247)	(0.0821)	(0.0420)
T*NonAmazon	0.0154	0.0137	0.0142	0.0611	0.0611	0.0162	-0.165**	0.0813
	(0.0316)	(0.0316)	(0.0316)	(0.0543)	(0.0543)	(0.0250)	(0.0824)	(0.0476)
Observations	189,019	189,019	189,019	69,797	69,797	63,624	44,170	11,428
R-squared	0.019	0.117	0.827	0.495	0.495	0.551	0.918	0.850
Market FE	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Product FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes

Table D2: Regression results. Pre-policy vs policy

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table D3: Regression results. Pre-policy vs policy and pre-policy vs post-policy

Dependent variable: In Price

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES		All four	products		Sugar	Chicken	Eggs	Noodles
NonAmazon	0.0311	0.214***	0.0260	0.0712***	0.217***	0.0478***	-0.0262	-0.399***
	(0.0360)	(0.0141)	(0.0330)	(0.0220)	(0.0314)	(0.00764)	(0.0275)	(0.0156)
T_1	0.189***	0.189***	0.189***	0.189***	0.263***	0.0260	0.412***	0.0886**
	(0.0314)	(0.0314)	(0.0314)	(0.0314)	(0.0541)	(0.0247)	(0.0821)	(0.0420)
T_2	0.169***	0.169***	0.169***	0.169***	0.0895	0.127***	0.396***	0.128***
	(0.0511)	(0.0511)	(0.0511)	(0.0511)	(0.123)	(0.0266)	(0.0852)	(0.0328)
T_1*NonAmazo	0.0154	0.0147	0.0142	0.0150	0.0617	0.0176	-0.164**	0.0813
	(0.0316)	(0.0316)	(0.0316)	(0.0316)	(0.0543)	(0.0250)	(0.0824)	(0.0476)
T_2*NonAmazo	0.0794	0.0788	0.0791	0.0799	0.219*	0.0147	-0.0937	0.125**
	(0.0513)	(0.0513)	(0.0513)	(0.0513)	(0.123)	(0.0271)	(0.0854)	(0.0517)
Observations	236,409	236,409	236,409	236,409	87,401	79,654	55,251	14,103
R-squared	0.039	0.139	0.830	0.862	0.608	0.599	0.933	0.834
Market FE	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Product FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1